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In this chapter, we present a computational study on how the weight of sub-word
units in determiningwordmeanings evolves chronologically in different languages.
Sub-word units, e.g., morphemes, syllables etc., play variable roles in determin-
ing word meanings. Some morphemes in English have standalone lexical mean-
ings (e.g., the root) while others function more as morpho-syntactic markers (e.g.,
the bound morphemes such as -ness etc.) The semantic weight of sub-word units
changes over time; for instance, some ancient characters in Chinese or ancient pre-
fixes in English no longer carry clear semantic meanings. The goal of this chapter
is to characterize such a change with computational methods. The semantic weight
of sub-word units can be captured by word embedding models (and their variants).

We present results from two substudies. In Study 1, we propose a novel neural
network-based word embedding model to model the semantic weights from sub-
word units.We draw a comparison between Chinese and Indo-European languages
in how the semantic weights of sub-words change over time, and show that the
weights of characters in Chinese (字 zi, the basic sub-word unit in Chinese) are
higher in ancient Chinese and lower in modern Chinese, while the opposite trend
is observed in Indo-European languages. This is in accordance with theories about
monosyllabic-to-bisyllabic shift in Chinese, and the synthetic-to-analytic shift con-
jecture in Indo-European languages. In Study 2, we apply a different embedding
model on another corpus to confirm the finding in Study 1. Although the chrono-
logical pattern of semantic weight found is inconsistent with that in Study 1, the
results are still meaningful in having discovered the presence of historical changes
of sub-word level semantic weights across different corpora and languages.

Our chapter calls for more systematic studies of the applicability of computational
embedding methods in modeling the sub-word semantics. Although discrepancies
are found in current models and corpora, our empirical findings suggest that word
level semantic composition is a dynamic process which reflects historical changes.
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1 Introduction

The roles that sub-word units play in determining word semantics differ across
languages. In typical alphabetic languages, such as English, the smallest gram-
matical sub-word unit is morpheme (Katamba 2015). A morpheme is either free
or bound: the former stands by itself as a word (e.g., the root of English words),
while the latter functions only as part of a word (e.g., affixes such as -ness, un-,
etc.). In East-Asian languages, however, the distinction between morphemes and
words is not as clear. Particularly in Chinese, the basic sub-word unit that acts
as a morpheme is the character (字 zi), but whether a single morpheme or a com-
bination of morphemes constitute a word is open to debate (Hsieh 2016).

In this chapter, we present two studies that use sub-word incorporated word
embeddings to explore the temporal patterns of the semantic weight of sub-
word units. In Section 3, we present our first study, in which a novel dynamic
sub-word-incorporated embedding (DSE) model is proposed, which quanti-
fies the semantic weights of sub-word units automatically via joint training tasks.
The advantage of this method is that the weights for different words are mod-
eled separately, which provides more fine-grained information. In Section 4, we
present the second study, in which we examined the existing model character-
enhanced word embedding (CWE) to obtain sub-word embeddings, and then
computed the semantic weights by comparing the norms of sub-word vectors
with word vectors. This method leads to faster training and more interpretable
results. The purpose of the second study is to confirm whether consistent find-
ings can be reached with a different model and corpus. With these two studies,
our goal is to reach reliable conclusions with computational approaches about
how the semantic weights of sub-word units change historically.

2 Related work

2.1 Learning vector representations of words

Among the massive amount of approaches to learning dense word vectors, one
of the most popular methods is the word2vec model, which implements two ef-
ficient ways of learning word vectors, skipgram and CBOW (continuous bag of
words) (Mikolov, Sutskever, et al. 2013, Mikolov, Chen, et al. 2013). Both mod-
els learn word embeddings by training a network to predict words that co-occur
within a window. CBOW aims at predicting the target word given context words
in a fixed window, while skipgram predicts the context word given the target
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word at the center, by maximizing the probability of target/context word, which
is approximated with hierarchical softmax or negative sampling (Mikolov, Suts-
kever, et al. 2013, Mikolov, Chen, et al. 2013).

2.2 Word embeddings with sub-word information

For most languages in the world, the internal structure of words contains infor-
mation about the semantics of the word. Incorporating parameters associated
with those internal structures in the training process can improve word embed-
dings so that they are more expressive of the meanings of words. There are two
types of improvement, semantic compositionality and reducing sparsity. Some
languages have strong compositionality at the word level. In Chinese for exam-
ple, the meaning of a word can be inferred by assembling the meanings of all
characters. For instance, the word 教育 jiao yu ‘education’, can be inferred from
themeanings of its first character教 jiao ‘teach’ and second character育 yu ‘raise’.
Based on this, Chen et al. (2015) propose a character-enhanced word embedding
model (CWE)

The second type of improvement uses the fact that in some morphologically
rich languages, one word can have multiple forms that occur rarely, making it
difficult to learn good representations for them. For example, Finnish has 15 cases
for nouns,1 while French or Spanish have more than 40 different inflected forms
for most verbs. A way to deal with this sparsity issue is to use sub-word infor-
mation. Bojanowski et al. (2017) propose to learn representations for character
n-grams and represent words as the sum of their n-gram vectors.2 Their model,
fastText, alters the training objective of skipgram by replacing the target word
vector with the sum of its n-gram vectors.

2.3 Word embeddings and language change

Word vectors have been used to study the long-term change of languages from
multiple angles. The most straightforward method is to group text data into time
bins and then train embeddings separately on these bins (Kim et al. 2014, Kulkarni
et al. 2015, Hamilton et al. 2016). Conclusions about language change are reached
by observing how the vectors of the same words change over time. The problem
with this approach is that the learned word vectors are subject to random noise

1See http://jkorpela.fi/finnish-cases.html.
2Another approach is to tokenize words into sub-words while optimizing a language model
acquired over these word pieces (Schuster & Nakajima 2012, Sennrich et al. 2015).
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due to corpus size. Bamler & Mandt (2017) address this with a probabilistic vari-
ation of word2vec model, in which words are represented by latent trajectories
in the vector space, and the semantic shift of words is described by a latent dif-
fusion process through time. Most of the existing approaches describe language
change by the trajectories of some representations in a high dimensional space.
Even though this provides rich information about every single point in the space
(word, character etc.), it is difficult to interpret and summarize these models and
discover the general patterns of language change. Other studies using word em-
beddings or related methods have been used in very similar context (Tahmasebi
et al. 2018, Kutuzov et al. 2018). This chapter explores the historical changes of
sub-word level semantics, which has not been studied extensively in existing
computational studies.

3 Study 1: Relationship between semantic weight and
word age

3.1 Dynamic sub-word-incorporated embedding model (DSE)

We propose the dynamic sub-word-incorporated embedding (DSE) model, which
captures the semantic weights carried by the sub-word units in words, on top of
the architecture of CWE and fastText models. The “dynamic” part is reflected in
the design considering that words rely on their internal structures to different
degrees in composing a meaning: we associate each word in the vocabulary with
a scalar parameter ℎ𝑤 , within the range [0, 1], which is the weight of the word
itself in predicting the co-occurring words within a context window. Correspond-
ingly, 1−ℎ𝑤 is the weight of its sub-word units. Here the sub-word units refer to
characters in a Chinese word, and a subset of 𝑛-grams of a word for English and
four other languages used in this study. We did not use word roots and affixes as
the sub-word units as in Xu et al. (2018), because of the lack of dictionary data in
some languages, and the relative simplicity of 𝑛-gram-based models.

In DSE, we use ℎ𝑤 to compute the weighted average vector for each word,
and substitute it for the average context vector 𝑥𝑘 in CWE (eq. 5.2), and for the
average target vector, as shown below:

⎧
⎨
⎩

𝑥′𝑘 = ℎ𝑤𝑘 𝑣𝑘 + (1 − ℎ𝑤𝑘 )( 1
𝑁𝑘

∑𝑁𝑘𝑡=1 𝑐𝑡),
replacing the 𝑥𝑘 in eq. (5.2)

𝑥′𝑖 = ℎ𝑤𝑖 𝑣𝑖 + (1 − ℎ𝑤𝑖 )∑𝑁𝑖𝑡=1 𝑐𝑡 ,
(5.1)
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Figure 5.1: The architecture of the two versions of the DSE model. DSE-
CBOW associates a semantic weight parameter ℎ𝑤 to each context
word, and DSE-SG does this to each target word. The “SU”s in the yel-
low box stand for “sub-word units”.

in which the subscripts 𝑘 and 𝑖 are the indices of words in the vocabulary. We
have two versions of model architectures: one is based on CWE (CBOW-like),
and the other is based on fastText (skipgram-like). They are referred to as DSE-
CBOW and DSE-SG respectively. The architectures of these models are shown in
Figure 5.1.

We call ℎ𝑤 the semantic weight parameter. It describes the proportion of con-
tribution from each word as an unanalyzable semantic unit, while 1 − ℎ𝑤 is the
total contribution from all the sub-word units. ℎ𝑤 is a learnable parameter in the
model.

3.2 Corpus data and training setup

We use the Wikimedia database dumps3 (up until July 2017) as our training data.
Data in six languages are used: Chinese (ZH), English (EN), French (FR), Ger-
man (DE), Italian (IT) and Spanish (ES). Raw text data are extracted from the
dump files using WikiExtractor.4 Further text cleaning is conducted by sepa-
rating sentences into lines, and converting non-proper-nouns (proper-nouns are

3https://dumps.wikimedia.org/
4https://github.com/attardi/wikiextractor
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identified using a pre-trained NERmodel provided in the Python package spacy5)
to lower case. For Chinese data particularly, word segmentation is carried out
using the Jieba segmenter.6 All traditional Chinese characters are converted to
simplified characters using OpenCC7. All non-Chinese characters are removed,
keeping only those within the Unicode range U+4E00–U+9FFF. The training data
of all six languages are of similar volumes: 33 to 40 million tokens each after pre-
processing.

To accelerate training, we limit the number of effective semantic units in each
word. For Chinese data, words containingmore than 7 characters are ignored. For
other languages, if a word contains more than 7 𝑛-grams, we randomly select
7 out of them, and ignore the rest. Here the number 7 is chosen based on the
following empirical observation: in a pilot study, we found that numbers larger
than 7 will not improve the resulting embeddings, but significantly slow down
the training. Other hyper-parameters are kept as close to the previous studies
as possible. The values of the hyper-parameters for training the DSE models are
shown in Table 5.1.

Table 5.1: Hyperparameter setting for Study 1.

Hyperparameter Value

Embedding size, word 300
Embedding size, sub-word 300
Window size 5
Number of negative samples 10
Batch size 128
Minimal word frequency 5
Initial learning rate, DSE-CBOW 0.05
Initial learning rate, DSE-SG 0.025

The training stage consists of three steps:

1. Pre-train the word embeddings: set the parameters for word embeddings,
i.e., the 𝑣𝑘 and 𝑣𝑖 in Equation (5.1) to trainable; set all the other parameters
to not trainable; train the model for 5 epochs.

5https://spacy.io/
6https://github.com/fxsjy/jieba
7https://github.com/BYVoid/OpenCC
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2. Pre-train the sub-word embeddings: set the parameters for sub-word units,
i.e., 𝑐𝑡 in Equation (5.1) to trainable; set all the other parameters to not
trainable; train the model for 5 epochs.

3. Set all the parameters to trainable (including embeddings and ℎ𝑤 s); train
the model for 5 epochs.

As for the size of 𝑛-grams, we use a fixed size 𝑛 = 4, i.e., no bigrams or trigrams
are considered. This choice is partially based on Bojanowski et al.’s (2017) work
showing that 𝑛 = 4 already achieves a satisfactory embeddings, and partially
due to speed consideration. For words that consist of more than 4 letters, we
only consider two sources for the mixture embeddings: the word itself and the
𝑛-gram (𝑛 < 4).

The semantic weight parameters ℎ𝑤 are implemented as a 𝑉𝑤 × 1 lookup table.
Thus, in each training step, the learning algorithm updates three embedding ta-
bles: word embeddings 𝐸𝑤 , character embeddings 𝐸𝑐 , and the semantic weights.
Specifically, for the DSE-SG model, the average embeddings are first computed
from 𝐸𝑤 , 𝐸𝑐 , ℎ𝑤 , and ℎ𝑐 using eq. (5.1) and then outputted as the final word vec-
tors. For DSE-CBOW model, just the 𝐸𝑤 table is outputted as the learned word
vectors.8

3.3 Results and discussion

We are interested in examining the relationship between the semantic weight
ℎ𝑤 of a word and its relative “age”. According to the observation that Chinese is
shifting from monosyllabic words to bisyllabic words, it is reasonable to expect
that newer Chinese words should have larger ℎ𝑤 than older words, because a
higher ℎ𝑤 indicates that the word as a whole rather than the individual sub-word
units is more important in determining its meaning. For other languages, we do
not have a clear idea on what the relationship could be, but they should provide
an interesting comparison.

First, we need to have a reliable way to measure the “age” of a word. We use
the Google Books Ngram (GBN)9 corpus, which contains word frequency infor-
mation from about 10 million books published over a period of five centuries
(Lin et al. 2012). It is the best resource we can find that provides estimated tem-
poral distributions of words in multiple languages. For each word in GBN we

8The discrepancy exists in the original implementations of CWE and fastText, and the reason
for it is out of the scope of this study.

9http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Figure 5.2: Semantic weight ℎ𝑤 against the first-appearance-year of
words in DE, EN, ES, FR, and IT. Words with sub-word units (𝑛-grams)
number ranging from 2 to 7 are plotted separately. Shaded area indi-
cates 95% point-wise confidence intervals of the fitted regression lines.
ℎ𝑤 scores are from the DSE-SG model.

extract the first year it appears in the dataset, and use this first-appearance-year
as an approximation of the word’s age. Then we check if the word’s age is corre-
lated with its ℎ𝑤 from training the DSE model. For example, the word爱人 ai ren
‘lover’ first appears in 1804 CE (at least according to the GBN collection). Thus,
our examination is based on the intersection of vocabularies between GBN and
the training data. For DE, EN, ES, FR and IT, the intersection covers above 95%
of the most common words in the training set, and the proportion for ZH is 84%.

In a short summary of the results, we find opposite ℎ2 ∼ year relationships
in Chinese and the other five languages. ℎ𝑤 decreases with the first-appearance-
year in the five Indo-European languages, as shown in Figure 5.2. Words with
sub-word units count ranging from 2 to 7 are included. Short words that have
only 1 𝑛-gram are excluded because the 𝑛-grams have the same form as the words.
There are some fluctuations but the overall decreasing trends of ℎ𝑤 are salient.
As the decrease of ℎ𝑤 is equivalent to the increase of 1 − ℎ𝑤 , it indicates that
in these five languages, sub-word units carry more semantic weights in newer
words than older ones. The ℎ𝑤 scores reported in Figure 5.2 are from the DSE-SG
model.
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As for Chinese, however, ℎ𝑤 increaseswith the first-appearance-year as shown
in Figure 5.3. We choose the sub-word units (characters) count = {2, 3, 4} because
they are the majority in the training data, with proportions 57.5%, 31.0%, and
8.6%. Frequency-wise, their proportions are more dominant: 82.9%, 11.8%, and
4.6% respectively. Single-character words are excluded because the vast majority
(98%) of words in the training data are multi-character ones. Words composed
of more than 4 characters are very uncommon in Chinese. From the plot, the
increasing trends of the 2-character words are observable, but less so for the 3-
and 4-character words. This indicates that our hypothesis is supported: charac-
ters carry more semantic weight in older Chinese words than in newer Chinese
words.

Besides, an interesting finding is that the ℎ𝑤 s from DSE-SG are larger than
those from DSE-CBOW in Chinese. It makes sense intuitively: a CBOW-like
model is usingmultiple context words to predict one word, and thus the semantic
weight of each individual word is diluted.
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First−appearance−year of the word

hw

Model DSE(CBOW) DSE(Skipgram)

Number of characters 2 3 4

Figure 5.3: Semantic weight ℎ𝑤 against first-appearance-year for Chi-
nese words with character number = 2, 3, and 4. Shaded area indicates
95% point-wise confidence intervals of the fitted regression lines.

177



Yang Xu徐炀 & Zheng-sheng Zhang张正生

4 Study 2: Temporal patterns of semantic weight in
historical corpora

In this study, we collect text data fromWikisource, a public resource of historical
articles. We divide the text data into segments according to the years of author-
ship, and train embedding models on each segment individually. These individ-
ual models can reflect the semantic weight for each historical period, and we
carry out a longitudinal analysis on how the semantic weight evolves.

4.1 Character-enhanced word embedding (CWE) model

The model we utilize in this study is the character-incorporated word embed-
ding models (CWE) (Chen et al. 2015), which presents modifications on top of
the original word2vec model. The design goal of CWE is to obtain a richer rep-
resentation of Chinese words by assigning a vector to each character in a word.
It replaces the context word vector, with an average vector 𝑥𝑘 ,

𝑥𝑘 = 1
2𝑣𝑘 +

1
2(

1
𝑁𝑘

𝑁𝑘
∑
𝑡=1

𝑐𝑡) (5.2)

where 𝑁𝑘 is the number of characters in word 𝑤𝑘 , and 𝑐𝑡 is the vector of the 𝑡th
character. Here the weights on the word and the characters within that word are
equal (0.5), which is based on an empirical hypothesis that context words and
characters are equally important in determining the semantics of target word.

4.2 Data collection and preprocessing

Wikisource10 is part of the Wikimedia foundation,11 which has the stated goal of
developing andmaintaining open content, wiki-based projects and providing the
full contents of those projects to the public free of charge. It hosts text data from
a broad range of categories and timespans, including professionally published
articles, newspaper articles, archived documents, etc. Wikisource includes mul-
tiple language-specific sub-domains with each article labeled with “author”, “ti-
tle”, and “publication time” (with a yearly granularity). The largest sub-domains
in terms of article number are English, French, Chinese, German, Spanish, and
Russian. Thus, we include these six languages in this study. The ProofreadPage
extensionmakes sure that all the works on thewebsite are verifiable, reliable, and

10https://wikisource.org
11https://wikimediafoundation.org/
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accurate. Wikisource provides ancient (600 CE) as well as contemporary articles.
We therefore consider Wikisource a useful resource for building a corpus for
historical language studies. Regrettably, only a few researchers have conducted
research using this material.

Wikisource does not offer direct download links of the data, so one of the
challenges of this project is to acquire the textual data from the website. Further-
more, anyone can edit articles on the website, so the structure of each HTML
page differs from the others. In order to solve this irregularity issue, distinctive
web crawlers for each subdomain were developed and the crawled JSON data
was extracted into text documents.

The collected corpus contains articles from the 11th century to the 21st century;
however, the number of articles is not evenly distributed along the timeline. The
amount of textual data for each bin is very important for providing an accurate
description of the semantics of a language for that time period. To overcome
this difficulty, we will only consider the articles dated from 1820 to 1930. These
articles were divided into temporal bins of 10 years. This division is arbitrary
and it does not correlate with any semantic difference in the language. For this
study, we use the Chinese subset of the corpus, because the target model CWE
is designed for Chinese language only.

4.3 Word segmentation

The Chinese written language is printed without marking boundaries between
words, like the blank space that is commonly used in other languages. Thus, it
requires a preprocessing step known as word segmentation, which places bound-
aries between adjacent characters in order to identify the unit of “word”. We use
the jieba word segmentor12 for this study. Although jieba is not designed for
ancient Chinese, we found that it is able to detect words that belong to ancient
vocabulary, such as中书 zhong shu ‘an official position during the Tang dynasty’,
若夫 ruo ru ‘if’ etc. The resulting corpus data with various word counts, charac-
ter counts, and vocabulary sizes in terms of unique word tokens can be seen in
Figure 5.4.

4.4 Definitions of semantic weight

Wedefine semantic weight in a differentway from that of Study 1 (Section 3). Here,
it is defined as the proportion of the Euclidean norm of a word vector relative

12https://github.com/fxsjy/jieba
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Figure 5.4: The distribution of word count, character count, and vocab-
ulary size (number of unique words) across article publication years in
the Wikisource corpora.

to the mean norms of its constituent character vectors, designated by the Ω in
Equation (5.3),

Ω𝑤 = ‖𝑣𝑤 ‖
1
𝑁𝑤

∑𝑐∈𝑤 ‖𝑣𝑐‖ + ‖𝑣𝑤 ‖
(5.3)

where 𝑁𝑤 is the number of characters in word 𝑤 . 𝑣𝑐 is the embedding vector of
character 𝑐, and 𝑣𝑤 is the word embedding vector. ‖𝑣𝑤 ‖ and ‖𝑣𝑐‖ are the Euclidean
norms, which have theoretically unbounded positive values. A word with larger
word vector norm ‖𝑣𝑤 ‖ will have a larger Ω𝑤 score, while a word with a larger
mean character norm ‖𝑣𝑐‖ will have a smaller Ω𝑤 score. Thus, Ω𝑤 quantifies the
degree to which a word functions as a whole semantic unit as opposed to its
constituent sub-units. Since CWE has two versions of implementation, CBOW
and Skipgram based, we examine both and use CWE-CBOW and CWE-Skipgram
to refer to the models respectively.

4.5 Model training procedure

We first split the training data into segments, based on the publication year of the
individual articles, and train one embedding model for each segment. We need to
choose the size of segments carefully, because we need to have sufficient number
of segments in order to find a consistent temporal pattern, while it is also neces-
sary to make sure that each segment is sufficiently large so that the embedding
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models are effectively trained. It is basically a trade-off between granularity and
effectiveness.

The whole training set, designated by 𝒟, is segmented into 𝑁 segments, re-
sulting in {𝒟1,𝒟2, … ,𝒟𝑁 }. We experimented with 𝑁 = 5 and 𝑁 = 10. Since the
token numbers are not evenly distributed among years, the size of 𝒟𝑖 varies. In
order to eliminate the potential confounding effects due to the varying sizes of
training data, we randomly sample 30k lines of text from each 𝒟𝑖 into 𝒟′

𝑖 .
For each 𝒟′

𝑖 in 𝒟 (𝑖 = 1, … , 𝑁 ; 𝑁 = 9), we train a CWE model, and calcu-
late the Ω𝑤 score for each word in vocabulary 𝑉 ′𝑖 . Then we use the mean score
Ω𝑖 = 1

𝑇𝑖 ∑𝑤∈𝑉𝑖 Ω𝑤 to estimate the average semantic weight of historical period 𝑖.
The purpose is to examine the relationship between Ω𝑖 and 𝑖. Our assumption is
that a correlation between Ω𝑖 and 𝑖 should be observed.

4.6 Results and discussion

We plot the Ω𝑖 score against the historical period 𝑖 in Figure 5.5. It can be seen
that Ω𝑖 decreases as 𝑖 increases. Because larger values of 𝑖 represent the historical
periods closer tomodern time, the observed increasing trend indicates that words
in modern languages have smaller Ω𝑖 than words in ancient times. The same
trends hold for both CWE-CBOW (Section 4.6) and CWE-Skipgram (Section 4.6).

In order to make a less biased comparison, in Figure 5.5 we individually ob-
serve words of different lengths, 𝑙 = 1, 2, 3, 4. The 𝑙 = 1 group includes mono-
character words, such as 一 yi ‘one’, 三 san ‘three’, 万 wan ‘ten thousand’, etc.
The 𝑙 = 2 group includes bi-character words, such as 一定 yi ding ‘must’, 不能
bu neng ‘cannot’, 世事 shi shi ‘world affairs’ etc. The 𝑙 = 3 and 𝑙 = 4 groups
contain more proper nouns (person and organization names), and fixed idioms,
such as 士大夫 shi da fu ‘scholars’, 皇太后 huang tai hou ‘queen’, 都督府 du du fu
‘governor’s office’, etc. We fit individual linear models with formula Ω𝑖 ∼ 𝑖 for all
four length groups, and all models return statistically significant negative coeffi-
cients (𝑝 < 0.05), indicating that the observed decreasing trends are reliable. The
fitted regression lines and the bootstrapped 95% confidence intervals are shown
in Figure 5.5.

Another fact worthy of note is that only a small subset of words appears
throughout the whole time span. For the accuracy of demonstration, we include
only those words that exist in all nine vocabulary sets 𝑉𝑖(𝑖 = 1, 2, … , 9), which we
refer to as common vocabulary. The size of the common vocabulary is negatively
correlated with word length, which is expected as an prediction of Zipf’s law (Li
1992).

181



Yang Xu徐炀 & Zheng-sheng Zhang张正生

(a) Results from CWE-CBOW.

(b) Results from CWE-Skipgram.

Figure 5.5: Average semantic weight Ω𝑖 in nine (9) historical groups
(𝑖 = 1, 2, … , 9). The results from CWE-CBOW and CWE-Skipgram are
shown in (a) and (b) respectively.
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It is surprising to find that the Ω metric demonstrates contrary patterns as
compared with the ℎ𝑤 metric in Study 1. The semantic weightΩ demonstrates an
opposite pattern compared with the ℎ𝑤 coefficient defined in Study 1. In Study 1,
the main finding about Chinese described in Figure 5.3 shows that the semantic
weight measured by ℎ𝑤 increases with the age of a word. TheΩ in Study 2 shows
a clear decreasing trend with historical period.

However, we do not think the results from Study 2 are sufficient to totally
reject the conclusion from Study 1. First, the 𝑥 axis in Study 1 is the approxi-
mated “age” of a word, acquired from an external dictionary book (Google Books
Ngram), while the 𝑥 axis in Study 2 is the actual publication year. The indepen-
dent variables of the two studies are essentially different. Based on the results,
we lean towards Study 2 because the decreasing pattern of Ω in Chinese is con-
sistent with those of the five Indo-European languages (Figure 5.2). We suspect
that the age of Chinese words according to GBN may not be an accurate esti-
mate. Secondly, the way we obtain ℎ𝑤 and Ω𝑤 is different as well. ℎ𝑤 is automat-
ically learned from data during the training stage of DSE model, while Ω𝑤 is a
post-hoc quantity computed after the CWEmodel is trained. In theories of repre-
sentation learning (Bengio et al. 2013), more informative parameters are assigned
with larger weights by the model, thus ℎ𝑤 andΩ𝑤 should bear the same semantic
weights. Based on these considerations, we conjecture that the discrepancy be-
tween Studies 1 and 2 is primarily due to the different operational definitions of
historical periods. Beyond that, the empirical findings from both studies clearly
indicate that the semantic weights of sub-word units indeed change with histor-
ical periods, confirmed by multiple corpora and models.

5 General discussion and conclusions

The findings from Study 1 provide new evidence to linguistic theories about word
formation. First, what constitutes a word in Chinese has changed: compared to
its earlier stage, modern Chinese tends to have multiple characters for a single
semantic unit. The semantic weight carried by a single character is decreasing.
This is strong evidence in favor of the claim in qualitative studies that Chinese
has been evolving towards multisyllabicity from monosyllabicity. Second, the
trend of increasing semantic weights on sub-word units in Indo-European lan-
guages is consistent with the “synthetic → analytic” pattern shift at the phrase
level composition (Hamilton et al. 2016). Moreover, the relative “synthetic” way
of composing Chinese word found in this study seems consistent with the holis-
tic encoding hypothesis in the perceptual theories about the Chinese writing
system (Dehaene et al. 2005, Mo et al. 2015).
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However, the above conclusions are not directly supported by the findings
from Study 2. Both theΩ𝑤 and ℎ𝑤 quantify the role that a word itself as an atomic
unit is playing in contributing to the semantic meanings, when sub-word units
are also contributing to the meaning. Ω and ℎ𝑤 should be of smaller value if sub-
word units carry critical semantic information; they should be of greater value
if sub-word units are not contributing actively. Thus, we believe the magnitudes
of both quantities should correctly reflect the semantic importance played by
sub-word units. Purely from the results of Study 2, we can also argue that the
individual characters in Chinese are playing more and more important roles as
the language evolves. The inconsistency between Study 1 and 2 is primarily due
to the different ways of setting up historical periods. In Study 1, we use the first
year in which a word appears in a large collection of printed materials, which is
less accurate than the segmentationmethod by actual publication year in Study 2.

The usage of Google Books Ngram (GBN) dataset in Study 1 can be the direct
cause for the inconsistency from Study 2. The lexicon publication year informa-
tion in GBN is obtained from the OCR scans, which may suffer from missing
pages or misrecognition. The main advantage of GBN is its support for multi-
ple languages. For future work, more accurate resources for identifying word
ages should be explored. For example, the Oxford English Dictionary (Simpson
& Weiner 1989) is a better resource for English, as it records the ambiguities and
semantic changes for a large vocabulary of English, which can be used to iden-
tify the “birth” year of specific word meanings. Another planned improvement
is to extend the range of sub-word units explored other than morphemes, for
example, semantically-associated sub-word units such as phonesthemes (Bergen
2004, Sagi 2019), sound symbolism (Imai et al. 2008) etc., because we assume the
sub-word level semantic decomposition is ubiquitous, and should go beyond the
predefined concepts of morphemes.

Regardless of the seemingly conflicting results of the two studies presented
in this chapter, we believe some meaningful empirical findings are discovered.
First of all, the semantic weight of sub-word units can be quantified by well de-
signed computational models. The parameters in those unsupervised machine
learning models can provide interesting information that is not available with
other count based statistical tools. Though we need to be careful when choosing
proper models and proper ways of defining the computational metrics of seman-
tic weights in future studies. At least fine-grained embeddingmodels such as DSE
and CWE should be further examined in terms of their behavioral consistency.
More importantly, the semantic weights of sub-word units indeed demonstrate a
clear pattern of change along historical periods, which to the best of our knowl-
edge, is not discussed in previous studies. The semantic weights defined in this
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study can be viewed as a metric of the “atomicness” of words. We put forward
a dynamic theory of word and sub-word level semantic composition – the way
we compose words, invent new words, and reuse old words, can be governed
by some universal rules. What these rules are, and how they are related to the
linguistic capacity of human beings are the research questions that await future
work.
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CBOW continuous bag-of-words
CWE character-enhanced word embedding
DSE dynamic sub-word-incorporated embedding
GBN Google Books Ngram
HTML Hypertext Markup Language
JSON JavaScript Object Notation
NER named entity recognition
OCR optical character recognition
SG skipgram
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